
J
H
E
P
0
3
(
2
0
0
8
)
0
7
1

Published by Institute of Physics Publishing for SISSA

Received: February 29, 2008

Accepted: March 25, 2008

Published: March 28, 2008

Lightlike Wilson loops from AdS/CFT

Philip C. Argyres

Department of Physics, University of Cincinnati,

Cincinnati OH 45221-0011, U.S.A.

E-mail: argyres@physics.uc.edu

Mohammad Edalati

Department of Physics, University of Illinois at Urbana-Champaign,

Urbana IL 61801, U.S.A.

E-mail: edalati@uiuc.edu

Justin F. Vázquez-Poritz

Department of Natural Sciences, Baruch College, The City University of New York,

New York NY 10010, U.S.A.

E-mail: Justin Vazquez-Poritz@baruch.cuny.edu

Abstract: We investigate the lightlike limit of stationary spacelike string configurations on

a large class of five-dimensional asymptotically AdS backgrounds. Specific examples include

gravity duals which incorporate finite ’t Hooft coupling, curvature-squared corrections,

and chemical potentials. A universal feature of these AdS/CFT models is that the string

solution with minimum action yields a lightlike Wilson loop whose leading behavior is

exponentially linear, rather than quadratic, in the width of the loop. Unless there is a

compelling reason for discarding the leading saddlepoint contribution to the Wilson loop,

following the proposal of Liu et. al. [2] leads to zero jet-quenching parameter for all of

these models.
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1. Introduction

The AdS/CFT correspondence [1] can be used to study certain strongly coupled gauge

theory plasmas. In particular, the dynamics of open strings on a five-dimensional AdS

black hole background are related to that of partons in the large N and large ’t Hooft

coupling limit of four-dimensional N = 4 SU(N) super Yang-Mills theory at finite temper-

ature. Attempts to use this framework to calculate measures of the rate at which partons

lose energy to the surrounding plasma, such as the friction coefficient and jet quenching

parameter, have been made in [2 – 5].

Motivated by the quadratic behavior in L associated with radiative energy loss by

gluons in perturbative QCD, the coefficient of the L2 term in the logarithm of a long

lightlike Wilson loop of width L was proposed as a non-perturbative definition of the jet

quenching parameter in [2]. In the AdS/CFT correspondence, an open string with both

endpoints on a probe brane can be used to evaluate a Wilson loop in the field theory. In

particular, the lightlike limit of a certain no-drag steadily moving string with a spacelike

worldsheet was used in [2, 6] to compute q̂ within this prescription. However, in the AdS

dual of N = 4 SU(N) SYM the string configuration considered is not the solution with

minimum action for the given boundary conditions, and therefore gives an exponentially

suppressed contribution to the path integral [7]. The minimum-action solution giving the

dominant saddlepoint contribution to the Wilson loop has a leading behavior that is linear
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in L, leading to the unphysical result that q̂ = 0. This may either indicate that the

perturbative reasoning that motivated this definition of q̂ simply does not extend to strong

coupling (e.g., the mechanism for relativistic parton energy loss in the super Yang-Mills

thermal bath gives a linear rather than quadratic dependence on L at strong coupling),

or that there is some additional physical consideration which requires that the leading

saddlepoint contribution to the Wilson loop be discarded when extracting q̂.

In the spirit of trying to understand the systematics of this leading saddlepoint con-

tribution, in this paper we compute it in the AdS/CFT correspondence in a large class of

five-dimensional asymptotically AdS backgrounds.

Previously [7], for the N = 4 SYM background, we analyzed the behavior of the

various saddlepoint contributions as the lightlike limit was approached in different ways.

Subsequently a number of arguments were made in [6] for why the minimum-action string

configuration should be discarded as unphysical. So we will start in section 2 by reviewing

the behavior of the string solutions in N = 4 SYM, and describing why they do not support

the above-mentioned arguments. In particular, we will further discuss the following points:

• Strings which ascend above the probe brane cannot consistently be discarded on the

grounds that the radius of the probe brane is a sharp UV cut-off.

• The dominant string does not probe shorter length scales than the thickness of the

lightlike Wilson line.

• Due to the nature of the lightlike limit, the dynamics of the dominant string remains

sensitive to the IR physics even though the entire string moves infinitely far from the

black hole.

• The negative L-independent term in the action is an artifact of a regularization

procedure which is ambiguous up to finite terms; it is only the difference of such

terms between different string configurations which is meaningful.

In section 3, we consider spacelike strings in a large class of 5-dimensional backgrounds

that are asymptotically AdS and smooth down to an event horizon. We find that in general

the dominant string configuration yields a lightlike Wilson loop whose leading behavior is

linear in L. Then, in section 4, we review the case of a neutral AdS black hole background,

and take into account the sub-leading effects of two types of corrections to this background:

α′ corrections and curvature-squared corrections. In section 5, we discuss spacelike strings

on a three-charge AdS black hole, which corresponds to a field theory with finite chemical

potentials. Lastly, in section 6 we discuss a mass-dependent speed limit for quarks that

arises for all of these backgrounds.

2. Review of spacelike strings

For the purpose of applying the non-perturbative definition of the jet quenching parameter

given in [2], we are interested in stationary spacelike configurations for which both endpoints

move along the probe brane in a direction perpendicular to their separation. As discussed
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Event HorizonProbe Brane
Spacelike Strings with v < 1

Event Horizon
Probe BraneSpacelike Strings with v > 1

Figure 1: Spacelike string configurations with velocity parameter v < 1 and v > 1 are shown on

the left and right, respectively. Spacelike strings with v < 1 only exist below a certain radius, which

is denoted by the dashed line.

in detail in [7], there are infinitely many of such spacelike string configurations for given

endpoints, which makes it crucial to understand which branch of solutions is physically

relevant. In particular, there are “down strings” which descend below the probe brane

and then turn back up, as well as “up strings” which ascend above the probe brane and

turn back down. There are also string configurations with multiple turning points that

alternate above and below the probe brane. These solutions can be constructed by simply

alternating segments of up and down strings.

For spacelike worldsheets, there is a sign ambiguity in the Nambu-Goto action. De-

pending on the choice of sign, the string with the minimum or maximum action will dom-

inate the path integral. The action is proportional to the length of the string. However,

since there are string configurations with arbitrarily many turns, the length of the spacelike

string solutions is unbounded from above (to the extent that it does not break the probe

approximation). This fixes the sign ambiguity on physical grounds and so it is the solution

with minimum action that exponentially dominates the path integral. Since the shortest

string must have only a single turning point, these are the solutions that we will focus on.

Spacelike string configurations which have a single turning point are shown in figure 1.

The quark separation is given by the distance L between the string endpoints. These strings

have markedly different behavior depending on whether the worldsheet velocity parameter

v is greater than or less than 1. Although spacelike configurations with v > 1 can exist

at all distances from the black hole, spacelike strings with v < 1 can only exist below the

radius z =
√

γ (denoted by the dashed line), where γ = 1/
√

1 − v2. We are using the

dimensionless radial variable z, for which the black hole horizon is located at z = 1. The

radius (or minimal radius, in the case of a D7-brane) of the probe brane is at z = z7, which

is related to the bare mass of the corresponding quarks. For v < 1 there are two up strings,

as well as a down string with a turning point on the event horizon. On the other hand,

for v > 1 there are no up strings and two down strings — one with a turning point on the

event horizon and one above it.

The relation between the velocity parameter v and the proper velocity V of the string
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(a) limz7→∞ limV →1+

(b) limz7→∞ limv→1−

(c) limz7→∞ limv→1+

(d) limv→1+ limz7→∞

Figure 2: The shaded region is the set of (v, z7) for which the string worldsheet is spacelike

and outside the horizon. The curved boundary corresponds to lightlike worldsheets. Different

approaches to the lightlike z7 = ∞ limit are shown.

endpoints generally involves z7 [7, 8]. For instance, on the background of a neutral AdS

black hole, V = v/
√

1 − z−4
7 . The physically sensible limit in which to evaluate the Wilson

loop is in the lightlike limit, taking the quarks to be infinitely massive (z7 → ∞) at fixed

quark separation L. Therefore, the lightlike limit V → 1 involves simultaneously taking

v → 1 and z7 → ∞. For other asymptotically AdS backgrounds, the timelike coordinate

can always be rescaled so that the speed of light corresponds to v = 1 in the asymptotic

region.

A priori, it is not obvious that taking v → 1 commutes with taking z7 → ∞. Four

different approaches to this limit were examined in detail in [7], which are labeled as (a)

through (d) in figure 2. The (a) and (b) limits apply to the v < 1 string configurations

shown in figure 1, while the (c) and (d) limits apply to the v > 1 strings. However, limit

(a) is not interesting since it requires that L → 0, in contradiction with our prescription

of keeping L fixed. Also, since the shorter of the two up strings with v < 1 (shown in

green in figure 1) does not exist with fixed L in the lightlike limit, we will not consider this

configuration.

We will now discuss the behavior of the action of the remaining string configurations

in the various lightlike limits. The (b) limit of the v < 1 red string and the (c) and (d)

limits of the v > 1 red string all yield the regularized action

Sr(red string) =
T
√

λ

β

(

−1.31 +
π

2

L

β

)

, (2.1)

where β is the inverse temperature of the black hole, λ is the ’t Hooft coupling constant

and T is the time interval. This is an exact expression, in the sense that no higher powers

of L enter. In particular, there is no L2 term. As will be discussed, the constant term is

from the regularization scheme.

On the other hand, the (b) limit of the v < 1 blue string and the (c) and (d) limits of
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the v > 1 blue string all yield the regularized action

Sr(blue string) =
T
√

λ

β

(

0.941
L2

β2
+ O(L4)

)

. (2.2)

It is reassuring that the value of the path integral does not jump discontinuously between

the (b), (c) and (d) limits even though they are evaluated on qualitatively different string

configurations. Although there are, in principle, many different lightlike limits intermediate

between the (b), (c) and (d) limits, we take this agreement as evidence that the result is

independent of how the lightlike limit is taken.

Since the red string configurations in figure 1 have the minimum action, we will refer to

these as “short strings”. Note that the short string can be an up or down string, depending

on how the lightlike limit is taken. Likewise, the blue strings will be referred to as “long

strings”.

The Wilson loop is then given by

W = C1e
−Sr(short string) + C2e

−Sr(long string) + · · · (2.3)

for some constants Ci. In the large-T (long Wilson loop) limit, this is dominated by the

short string saddlepoint configuration. A naive application of the prescription of [2] that

q̂ is proportional to the coefficient of L2 in ln W in the large-T limit, would then yield the

unphysical result that q̂ = 0. Thus this prescription has been modified by dropping the

leading saddlepoint contribution to W altogether in order to get q̂ 6= 0.

The question thus arises if there is a simple physical justification for discarding the

leading saddlepoint. A number of such reasons were suggested in [6]. However, they do

not seem to be supported by a detailed examination of the short string solutions, as we

now discuss.

UV cut-off. Depending on how the lightlike limit is taken, the minimum-action string

either descends down to a turning point below the radius of the probe brane or ascends

up to a turning point above the probe brane. We will refer to these configurations as

“down strings” and “up strings”, respectively. If the radius of the probe brane is regarded

as a sharp UV cut-off, then one might presume that the up string should be discarded,

since it probes the region above the cut-off. However, in a model which treats the probe

brane radius as a boundary cut-off, one does not know how to compute accurately in the

AdS/CFT correspondence. For this reason, we deal with the N = 4 super Yang Mills

theory, for which there is no UV cut-off and the AdS/CFT correspondence is precise.

Moreover, if one discards the up string on the premise that we will eventually have

a better understanding of the AdS/CFT correspondence in the presence of a UV cut-off,

then this leads to a discrepancy. Namely, there are lightlike limits for which the dominant

solution is a down string (i.e., when v > 1), which cannot be discarded on the grounds

of such a UV cut-off. The computation of the jet quenching parameter would then be

ambiguous, since it depends on how the lightlike limit is taken.
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Event HorizonProbe Brane
Step 1: v → 1−

Event Horizon
Probe Brane

Step 2: z7→ ∞

Event Horizon
Probe BraneStep 1: z7→ ∞

Event Horizon
Probe BraneStep 2: v→ 1+

Figure 3: The top pictures show how an up string behaves during the two steps in version (b) of

the lightlike limit. Likewise, the bottom pictures show the behavior of a down string during the

two steps of version (d) of the lightlike limit. Although these two ways of taking the lightlike limit

are qualitatively different, both strings approach a straight string that lies along the probe brane.

Probing shorter length scales. As shown on the upper left portion of figure 3, the red

up string ascends infinitely far above the probe brane as v → 1−. This was taken in [6]

to mean that such a string probes the physics at length scales infinitely shorter than the

thickness of the Wilson line. However, step 2 in version (b) of the lightlike limit is to take

z7 → ∞, for which the up string flattens along the probe brane. This is shown in the upper

right portion of figure 3. Thus, this string does not probe shorter length scales than the

thickness of the Wilson line. Likewise, the bottom of figure 3 shows how the second step

of the (d) limit causes the red down string to flatten along the probe brane from below.

Sensitivity to IR physics. Regardless of how the lightlike limit is taken, the entire

string configuration with minimum action moves infinitely far from the black hole. This

might naturally lead one to conclude that this string is not relevant for physical observables

having to do with the IR physics. To see why this is not the case, let us consider the up

string. In order for the worldsheet of the up string to be spacelike, it must lie within a

region bounded by the radius z =
√

γ. In this respect, this radius plays a role analogous

to that of the ergosphere of a Kerr black hole. The very presence of this critical radius, for

a given value of the string velocity parameter v, is a feature of the black hole background.

Since the entire string lies within this critical radius as the lightlike limit is taken, its
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dynamics remain sensitive to the IR physics associated with black hole.

As can be seen in figure 3, in the lightlike limit the up and down strings with minimum

action both approach a straight string that lies along the probe brane. A hypothetical string

configuration lying straight along a constant radius was briefly discussed in [6], where it

was pointed out that such a string does not actually arise as a solution of the second-order

equations of motion (it merely solves the first integral arising from the equations of motion)

and should therefore be rejected. We emphasize that the strings considered here are not

this straight string, even though they approach a straight string as the probe brane radius

goes to infinity. Again, the fact that these strings lie within the critical radius z =
√

γ

enables them to arise as genuine spacelike solutions to the full equations of motion.

Negative term in action. In order to regulate the action away from the lightlike limit,

we subtract the action of two straight strings which extend from the probe brane to the

event horizon. For the minimum-action string, this particular regularization scheme yields

a negative L-independent term in the action. It was claimed in [6] that this leads to an

unphysical result — namely, a dipole of zero size would have a nonzero photoabsorption

probability.

However, the negative term in the action is simply an artifact of this regularization

procedure. In particular, throughout the literature, this subtraction is chosen in order to

remove infinite constant contributions but is ambiguous up to finite terms. It has been

shown in [9] that the correct treatment of the boundary conditions together with a Leg-

endre transform of the Nambu-Goto action (area of the worldsheet) should automatically

and uniquely subtract divergent contributions from 1/2 BPS Wilson loops. It would be

interesting to evaluate our (non-supersymmetric) Wilson loop using perhaps a modification

of this prescription. Nevertheless, the currently used ad hoc regularization scheme suffices

for our purposes of comparing the actions of two different string configurations, since this

ambiguity does not affect the difference between the actions. Moreover, information re-

garding the energy loss of partons might be encoded within the L-dependent term, which

does not share in this ambiguity.

Just because these simple criteria fail to separate the short string solutions from the

long ones, it does not follow that there is not, nevertheless, some qualitative distinction

between these solutions. Evidence of such a qualitative separation between them might

give a clue as to whether or why the long strings are associated to parton frictional forces

while the short strings are not. In the remainder of the paper we try to test this possibility

by calculating the lightlike limits of string configurations with smallest action for a large

class of asymptotically AdS black hole backgrounds.

3. Spacelike strings on asymptotically AdS backgrounds

Consider a five-dimensional background with a metric of the form

ds2
5 = −c2

T dt2 + c2
X (dx2

1 + dx2
2 + dx2

3) + c2
R dr2 , (3.1)

where cT , cX , and cR are functions only of the radial coordinate r. In the cases that we

will consider, there is an event horizon located at rh and the geometry is asymptotically
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AdS with a radius R. The inverse temperature is given by

β =
4πcT cR

(c2
T )′

∣

∣

∣

∣

r=rh

. (3.2)

The classical dynamics of a string in this background is described by the Nambu-Goto

action

S = − 1

2πα′

∫

dσ dτ
√
−G , (3.3)

with

G = det[gµν(∂Xµ/∂ξα)(∂Xν/∂ξβ)] , (3.4)

where ξα = {τ, σ} and Xµ = {t, x1, x2, x3, r}.
A quark-antiquark pair with constant separation and moving with constant velocity

perpendicular to the separation of the quarks can be described by the worldsheet embedding

t = τ , x1 = vτ , x2 = σ , x3 = 0 , r = r(σ) . (3.5)

We take the boundary conditions

0 ≤ τ ≤ T , −L/2 ≤ σ ≤ L/2 , r(±L/2) = r7 , (3.6)

where r7 is the (minimal) radius of a probe D-brane and r(σ) is a smooth embedding. With

the embedding (3.5) and boundary conditions (3.6), the string action becomes

S = − T

πα′

∫ L/2

0
dσ

√

(c2
T − v2c2

X)
(

c2
X + c2

Rr′2
)

, (3.7)

where r′ = ∂r/∂σ. The resulting equations of motion give

r′2 = − c2
X

α2c2
R

[(c2
T − v2c2

X)c2
X + α2] . (3.8)

where the integration constant α2 > 0 describes spacelike string configurations. Here, we

have taken the first integral of the second order equations of motion which follows from

the existence of a conserved momentum in the direction along the separation of the string

endpoints.

Equation (3.8) can be integrated to give

L = 2α

∣

∣

∣

∣

∣

∣

∫ r7

rt

dr
cR

cX

√

(c2
T − v2c2

x)c2
X + α2

∣

∣

∣

∣

∣

∣

. (3.9)

This integral expression determines α in terms of L. The absolute value is there in order

to cover both zt < z7 and z7 < zt.

For the solutions of (3.8), the regulated action can be written as

Sr =
T
√

λ

πR2





∣

∣

∣

∣

∣

∣

∫ r7

rt

dr
cXcR(c2

T − v2c2
X)

√

(c2
T − v2c2

X)c2
X + α2

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∫ r7

rh

dr cR

√

c2
T − v2c2

X

∣

∣

∣

∣



 . (3.10)
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where we have used the fact that α′ = R2/
√

λ. In order to regulate the action, we have

subtracted the action of two straight strings.

For the backgrounds that we will consider, the turning point rt is given by the root of

either (cR)−2 or (c2
T − v2c2

X)c2
X +α2. As we will see for particular examples, the first string

descends all the way down to the event horizon of the black hole, even as the endpoints

on a probe brane are taken to infinity. On the other hand, the second string approaches

a straight string that lies along a constant radius as the probe brane is taken to infinity.

Therefore, we will refer to the first string as the “long string” and the second string as the

“short string”.

The existence of multiple strings with the same endpoints is due to the fact that

multiple values of α correspond to the same L, as can be seen by analyzing (3.9). In

particular, there are two possibilities that correspond to small L, which is the relevant

regime for jet quenching. Firstly, L → 0 corresponds to α → 0. Since this holds for a

finite range of integration, this applies to the long string. The other possible way of getting

L → 0 is for the range of integration to vanish (r7 − rt → 0) for some finite value of α. We

will see that this is indeed the case for the short string.

We will now give the general formulae for the regularized action of the long and short

string configurations in the lightlike limit as L → 0.

Long string. We will now make use of the fact that L → 0 corresponds to α → 0 for the

long string to find a general relation between Sr and L in this limit. For the long string, L

becomes

L = 2αI , I ≡
∫ ∞

rh

dr
cR

c2
X

√

c2
X − c2

T

(3.11)

in the lightlike limit and as α → 0. We are assuming that c2
X > c2

T outside of the horizon,

which tends to be the case for most black hole geometries. Likewise, the regularized action

becomes

Sr = α2 T
√

λ

2πR2
I . (3.12)

Eliminating α between these two expressions gives

Sr =
T
√

λ

8πR2
I−1L2 + O(L4) . (3.13)

Note that this differs from the action for a general background that was given in [10] since

here it is expressed in the reference frame of the plasma rather than that of the parton.

The fact that the regularized action vanishes in the limit L → 0 can be understood

by the following heuristic reasoning. As L → 0, the long string becomes two coincident

straight strings which extend from the black hole horizon to infinity. Since it is the action

of this configuration that has been subtracted from that of the long string, the regularized

action must therefore vanish.

Short string. For the short string, in the lightlike limit rt and r7 go to infinity simul-

taneously. As will be demonstrated for explicit examples, in this limit r7 − rt → 0 for

finite α. Then the action reduces to that of a hypothetical straight string extended along a

– 9 –
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constant radius. Note that, while this trivial string configuration does indeed solve (3.8), it

is not actually a solution of the second-order equations of motion themselves. Nevertheless,

the short string, which is a genuine solution to the equations of motion, approaches this

straight string configuration in the lightlike limit.

This enables us to easily evaluate the integral for the action given by (3.7) at r = r7.

Then the regularized action reduces to

πR2

T
√

λ
Sr = −

∫ ∞

rh

dr cR

√

c2
X − c2

T +
1

2

(

cX

√

c2
X − c2

T

)

∣

∣

∣

∣

r=r7

L . (3.14)

Thus, we see that the action of the short string is generally less than that of the long

string. This is to be expected for the following reason. As r7 − rt → 0 and L → 0, the

short string has infinitesimal length and the unregularized action vanishes. Thus, in this

limit Sr → −S0, where S0 > 0 is the action of the two straight strings.

We have assumed that the short string has a well-defined lightlike limit, for which the

regularized action is not divergent. While this turns out to be the case for all asymptotically

AdS backgrounds, this assumption does not necessarily carry over to backgrounds with

different asymptotical behavior. For example, it has been found that none of the particular

lightlike limits studied here are well-defined for a short string on ten-dimensional wrapped

fivebrane duals of SQCD-like theories [11]. In particular, while the unregularized action

of the short string is in fact well-behaved, S0 itself is divergent and so the “regularized”

action goes to negative infinity. One should therefore discard the short string solution

and turn to the configuration with next lowest (and finite) action, namely the long string.

However, in this case the regularized action of the long string vanishes. Thus, according

to the proposed non-perturbative definition of the jet quenching parameter given in [2],

q̂ = 0 [12]. It has been suggested that this result is associated with the non-local Little

String Theory modes that are present in the UV regime. It would be interesting to see

if gravitational backgrounds with B fields which are dual to the large N limit of non-

commutative gauge theories share this property [13, 14].

4. Spacelike strings on a neutral AdS black hole and various corrections

4.1 On the neutral AdS black hole

At finite temperature, the large N , large ’t Hooft coupling limit of four-dimensional N = 4

SU(N) super Yang-Mills theory is equivalent to type IIB string theory on the background

of the near-horizon region of a large number N of non-extremal D3-branes [1]. From the

perspective of five-dimensional gauged supergravity, this is the background of a neutral AdS

black hole whose Hawking temperature equals the temperature of the gauge theory. We

will now apply the general formulae of the previous section to the case of a five-dimensional

AdS black hole, which has the metric components

c2
T =

r2

R2
f , c2

X =
r2

R2
, c2

R =
R2

r2
f−1 , (4.1)
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where

f = 1 − r4
0

r4
. (4.2)

The radius of the event horizon rh = r0. We will use the rescaled coordinate z = r/r0, so

that zh = 1 and z7 = r7/r0. The inverse temperature is

β =
πR2

r0
. (4.3)

As can be seen by applying the general formula (3.8) to this background, the turning

point of the long string is given by zt = 1, while the turning point of the short string

is specified by z4
t = γ2(1 − α2). We will now consider the lightlike limit for both string

configurations.

Long string. For the case of the AdS black hole background, the general expression for

the action in (3.13) reduces to (2.2). Note that this result is independent of the precise way

in which the lightlike limit is taken. Namely, the simultaneous limits r7 → ∞ and γ → ∞,

along with α → 0, can be applied directly to (3.9) and (3.10) without any ambiguity.

Short string. The turning point is specified by z4
t = γ2(1 − α2). Since zt depends on

γ, there is an ambiguity in the lightlike limit. Namely, there is a continuous family of

limits for which we simultaneously take γ → ∞ and z−1
7 ≡ ǫ → 0. For the AdS black hole

background, we demonstrated in [7] that three particular ways of taking the lightlike limit

(the (b), (c) and (d) limits) yields the same relation (2.1) between the regularized action

and L, which is an indication that this relation is independent of the precise way in which

the lightlike limit is taken.

This agreement is reassuring, since it demonstrates that the path integral does not

jump discontinuously between these limits even though they are evaluated on qualitatively

different string configurations (namely, the (b) limit considers an string which rises above

the probe brane whereas the (c) and (d) limits consider a string that descends below).

When we consider the short string in other backgrounds, we will be content to restrict

ourselves to the (b) limit where we first take v → 1− (γ → ∞) before taking ǫ → 0.

4.2 α′ corrections

Corrections in inverse ’t Hooft coupling 1/λ correspond to α′ corrections on the string

theory side. The α′-corrected near extremal D3-brane has the metric [15, 16]

ds2
10 = −c2

T dt2 + c2
X dx2

i + c2
R dr2 + GMn dxMdxn , (4.4)

where xM = (t, xi, r;xn), i = 1, 2, 3 and n = 1, . . . , 5. We rescale the metric functions as

c2
T =

r2
0

R2
ĉ2
T , c2

X =
r2
0

R2
ĉ2
X , c2

R =
R2

r2
0

ĉ2
R , (4.5)

where

ĉ2
T = z2(1 − z−4)(1 + b T (z) + . . . ) ,

ĉ2
X = z2(1 + b X(z) + . . . ) ,

ĉ2
R = z−2(1 − z−4)−1(1 + b R(z) + . . . ) , (4.6)
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and

T (z) = −75z−4 − 1225

16
z−8 +

695

16
z−12 ,

X(z) = −25

16
z−8(1 + z−4) ,

R(z) = 75z−4 +
1175

16
z−8 − 4585

16
z−12 . (4.7)

The horizon is located at z = 1, and we are using the rescaled coordinate z = r/r0. The

expansion parameter b can be expressed in terms of the inverse ’t Hooft coupling as

b =
ζ(3)

8
λ−3/2 ∼ .15λ−3/2 . (4.8)

The inverse temperature β is given by

β =
πR2

r0
(1 − 15b) . (4.9)

With the embedding (3.5) and boundary conditions (3.6), we have

L =

∣

∣

∣

∣

2αR2

r0

∫ zt

z7

dz
ĉR

ĉX

√

(ĉ2
T − v2ĉ2

x)ĉ2
X + α2

∣

∣

∣

∣

, (4.10)

and the regulated action can be written as

Sr =
Tr0

√
λ

πR2





∣

∣

∣

∣

∣

∣

∫ zt

z7

dz
ĉX ĉR(ĉ2

T − v2ĉ2
X)

√

(ĉ2
T − v2ĉ2

X)ĉ2
X + α2

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∫ z7

1
dz ĉR

√

ĉ2
T − v2ĉ2

X

∣

∣

∣

∣



 . (4.11)

Long string. The regularized action for the long string is given by [23]

βSr

T
√

λ
=

π3/2Γ(3/4)

2Γ(1/4)

[

1 −
(

45 − 30725
√

2π

924 Γ(1/4)Γ(3/4)

)

b

]

L2

β2
+ O(L4)

≈ .941(1 − 1.7652λ−3/2 + · · · )L
2

β2
+ O(L4) . (4.12)

Note that this differs from the expression in [23] since we are in the reference frame of the

plasma rather than that of the parton.

Short string. For z ≫ 1, we can approximate

(ĉ2
T − v2ĉ2

X)ĉ2
X + α2 ≈ z4

γ2
+ α2 − 1 − 75b . (4.13)

Thus, there is a turning point at large distance given by z4
t = γ2(1 + 75b − α2). In the (b)

limit, this enables us to write

L =
2αγR2

r0

∫ zt

1/ǫ

dz

z2
√

z4
t − z4

+ · · · , (4.14)
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where there are subleading terms which will vanish as ǫ → 0. Examination of (4.14) shows

that, L remains finite if one takes ǫ → 0 in such a way that

δ2 ≡ ǫ2

1 + 75b − α2
(4.15)

remains fixed. Eliminating α in favor of δ in (4.14) and changing variables to y =

(γǫ/δ)−1/2z gives

L =
2αγR2

r0

(

δ

γǫ

)3/2 ∫ 1

1

ǫ

q

δ
γǫ

dy

y2
√

1 − y4
· · · → 2

π
β(1 +

105

2
b) δ , (4.16)

where we have taken the limit ǫ → 0. Also, we have used the temperature formula (4.9).

Likewise, the regulated action (4.11) can be written as

πR2

Tr0

√
λ

Sr = γ

(

δ

γǫ

)3/2 ∫ 1

1

ǫ

q

δ
γǫ

dy

y2
√

1 − y4

(

1 + 75b − ǫ2

δ2
y4 + · · ·

)

−
∫ 1/ǫ

1

dz√
z4 − 1

(

1 +
1

2
b

(

75 + 75z−4 − 385

8
z−8 − 1945

8
z−12

))

.

Evaluating these integrals in the (b) limit and writing the action in terms of L gives

βSr

T
√

λ
= c +

π

2β
(1 + 1.13λ−3/2 + · · · )L , (4.17)

where

c = −
√

πΓ[54 ]

Γ[34 ]

(

1 +
128845

7392
b + · · ·

)

≈ −1.31(1 + 2.61λ−3/2 + · · · ) , (4.18)

and we have used (4.8). This is in agreement with the general formula (3.14).

4.3 Curvature-squared corrections

4.3.1 General corrections

The five-dimensional action describing general curvature-squared corrections is given by

S =

∫

d5x
√−g

[ R
2κ

+
6

κR2
+ c1 R2 + c2 RµνRµν + c3 RµνρσRµνρσ

]

. (4.19)

where ci are arbitrary (but small) coefficients. The metric components for a five-

dimensional AdS black brane solution with the sub-leading curvature-squared corrections

is given by [21]

c2
T =

r2

R2
fk , c2

X =
r2

R2
, c2

R =
R2

r2
f−1 , (4.20)

where

f = 1 − r4
0

r4
+ b1 + b2

r8
0

r8
, (4.21)
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and

b1 =
4κ

3R2
[2(5c1 + c2) + c3] ,

b2 =
4κ

R2
c3 . (4.22)

We have included the scaling factor k = 1/(1 + b1) for time in order for the speed of light

in the boundary theory to be unity.

The formula for the inverse temperature of the black brane with the subleading cor-

rections is given by

β =
πR2

r0

(

1 − 1

4
b1 +

5

4
b2

)

. (4.23)

It has been shown that the conjectured lower bound of 1/4π on the viscosity-to-entropy

ratio [17, 18] can be violated by the curvature-squared corrections [21, 22]. The new ratio

is given by

η

s
=

1

4π

[

1 − 16c3κ

R2

]

, (4.24)

which violates the conjectured bound for theories with c3 > 0. Note that while c1 and c2

affect the viscosity η and the entropy s separately but not their ratio.

With the embedding (3.5) and boundary conditions (3.6),

L =

∣

∣

∣

∣

2αR2

r0

∫ z7

zt

dz

z2
√

f [z4(kf − v2) + α2]

∣

∣

∣

∣

, (4.25)

where z = r/r0. With the rescaled coordinate z,

f̃ ≡ kf = 1 − k

z4
+

kb2

z8
. (4.26)

The black hole horizon zh is given by the largest root of f̃ , which is

z4
h =

1

2
(k +

√

k(k − 4b2)) . (4.27)

The turning point zt is either at the black hole horizon zh or else at z+, where

z4
± =

γ2

2

(

k − α2 ±
√

(k − α2)2 − 4kb2γ−2
)

, (4.28)

and γ = 1/
√

1 − v2.

The regulated action can be written as

Sr =
Tr0

√
kλ

πR2





∣

∣

∣

∣

∣

∣

∫ z7

zt

dz
(f̃ − v2)z2

√

f̃ [z4(f̃ − v2) + α2]

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∫ z7

zh

dz

√

f̃ − v2

f̃

∣

∣

∣

∣

∣

∣



 . (4.29)
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Long string. Since regularized action for the long string configuration has not been

considered for this background elsewhere, we will show some of the details. For metric

components given by (4.20) and (4.21), the general expression (3.11) for the integral I

becomes

I =

∫ ∞

rh

dr
R4

r4
√

f
√

1 − kf
. (4.30)

Using the variable y ≡ r/rh, I can be expanded for small b1 and b2 as

I =

(

1 +
1

4
b1 +

1

4
b2 + · · ·

)

R4

r3
0

∫ ∞

1

dy
√

y4 − 1

(

1 +
b2

y4
+ · · ·

)

=

√
πΓ(1/4)

4Γ(3/4)

R4

r3
0

(

1 +
1

4
b1 +

7

12
b2 + · · ·

)

. (4.31)

Using (3.13) and (4.23), we find that the regularized action is given by

βSr

T
√

λ
=

π3/2Γ(3/4)

2Γ(1/4)

(

1 − b1 +
19

6
b2

)

L2

β2
+ O(L4)

≈ .941

[

1 − 8κ

3R2

(

5c1 + c2 −
17

4
c3

)]

L2

β2
+ O(L4) . (4.32)

Short string. We will now consider the (b) limit. Since in this limit we first take

v → 1− (γ → ∞) before taking ǫ ≡ z−1
7 → 0, (4.25) becomes

L =
2αγ

√
kR2

r0

∫ z+

1/ǫ

dz
√

f̃(z4
+ − z4)(z4 − z4

−)
. (4.33)

In order for L to remain fixed in this limit, we must keep

δ2 ≡ 2ǫ2

k − α2 +
√

(k − α2)2 − 4kb2γ−2
(4.34)

fixed. Upon taking γ → ∞, this reduces to

δ2 =
ǫ2

k − α2
. (4.35)

As γ → ∞, z4
+ → γ2ǫ2/δ2 and z4

− → kb2δ
2/ǫ2. Note that 1 ≪ z− ≪ ǫ−1 as ǫ → 0. This

enables us to expand the 1/

√

f̃ and 1/
√

z4 − z4
− factors for large z. Changing variables to

y = (γǫ/δ)−1/2z, L can be expressed as a series of Hypergeometric integrals. After taking

the limits γ → ∞ and ǫ → 0 while keeping δ fixed, we find that

L =
2kR2

r0
δ =

2

π
[1 +

5

4
(b2 − b1) + · · · ]δ , (4.36)

where we have used the corrected formula for the inverse temperature (4.23).

Likewise, the regulated action (4.29) can be written as

Sr =
Tr0

√
kλ

πγR2





∫ z+

z7

dz
γ2k(z4 − b2) − z8

z4
√

f̃(z4
+ − z4)(z4 − z4

−)
−

∫ z7

zh

dz

√

kγ2(z4 − b2) − z8

z8 + k(b2 − z4)



 . (4.37)
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We expand 1/

√

f̃ and 1/
√

z4 − z4
− in the first integral for large z. We also expand both

integrals for small b2 keeping only the linear correction term. The result is that

βSr

T
√

λ
= c +

(

1 − 7

4
b1 +

5

4
b2 + · · ·

)

δ , (4.38)

where

c = −
√

π Γ(5/4)

Γ(3/4)

(

1 − b1 +
3

2
b2 + · · ·

)

≈ −.131

(

1 − 14κ

R2
c3

)

, (4.39)

where we have used (4.22). The action can be written in terms of L as

βSr

T
√

λ
= c +

π

2

(

1 − 2κ

3R2
(20c1 + 4c2 − 13c3) + · · ·

)

L

β
, (4.40)

which agrees with (3.14).

4.3.2 Gauss-Bonnet gravity

The Gauss-Bonnet combination of curvature-squared terms corresponds to setting b1 =

b2 ≡ b. In this case, there is an exact black brane solution whose metric coefficients have

the form (4.20), where f and k are now given by [19, 20]

f =
1

2b

[

1 −
√

1 − 4b

(

1 − r4
0

r4

)]

, k =
1

2
(1 +

√
1 − 4b) . (4.41)

As before, we have chosen k so that the boundary speed of light is unity. We assume that

b ≤ 1/4, since beyond this point there is no vacuum AdS solution.

The inverse temperature is

β =
πR2

√
kr0

. (4.42)

We will now present the regularized action for the long and short strings in this background.

Long string. From (3.11) and (3.13), we find that

βSr

T
√

λ
= F (b)

L2

β2
+ O(L4) , (4.43)

where

F (b) =
π2

8
√

2bk3

[
∫ ∞

1

dz

z4
√

h(1 − k
2bh)

]−1

, h ≡ 1 −
√

1 − 4b(1 − z−4) . (4.44)

We numerically integrated to solve for F (b), the result of which is shown in figure 4.

Note that if there are no curvature-square corrections then F (0) = 0.941. F (b) has ex-

ponential behavior up to the value F = 5.244 at b = 1/4. If the short string could be

discarded and the jet quenching parameter read off from the L2 term of the regularized

action, then we would find that q̂ is enhanced due to the Gauss-Bonnet corrections with

positive b, while q̂ decreases with negative b. However, as previously discussed, we do not

know of a compelling reason to discard the short string.
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Figure 4: F (b) versus b for the long string in the case of Gauss-Bonnet gravity.

-1 -0.8-0.6-0.4-0.2 0.2
b

-2.5

-2

-1.5

c

Figure 5: c as a function of b for the short string in the case of Gauss-Bonnet gravity.

Short string. In the lightlike limit, the regulated action of the short string can be written

as

βSr

T
√

λ
= c +

π

2
F (b)

L

β
, (4.45)

where F (b) can be solved exactly as

F (b) =

√

2√
1 − 4b(1 +

√
1 − 4b)

, (4.46)

and

c = −
∫ ∞

1
dz

√

2b

k(1 −
√

1 − 4b(1 − z−4))
− 1 . (4.47)

We numerically integrated to solve for c as a function of b, the result of which is

presented in figure 5. Note that c goes to its maximum value of −0.826 as b → −∞. Since

c is always negative, the action of the short string is less than that of the long string for

all values b.
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5. Including chemical potentials

A five-dimensional three-charge AdS black hole has the metric components [24]

c2
T = H−2/3f , c2

X =
r2

R2
H1/3 , c2

R = H1/3f−1 , (5.1)

where

f =
r2

R2

(

H− r4
0

r4

)

, H = H1H2H3 , Hi = 1 +
qi

r2
, (5.2)

and i = 1, 2, 3.

In order to avoid a naked singularity, qi ≥ 0. The radius of the horizon rh is given by

the largest root of f . For the case of vanishing q3, this is given by

r2
h =

1

2

(

√

4r4
0 + (q1 − q2)2 − (q1 + q2)

)

. (5.3)

For vanishing q2, a regular horizon is guaranteed for all r0 > 0. On the other hand, for

two-charge case it is required that q1q2 < r4
0 in order to have a regular horizon. A similar

requirement is needed for the more complicated case of three charges.

This gravity background is dual to super Yang-Mills theory with finite temperature

and finite chemical potential for the U(1) R-charges. The inverse temperature β is given

by

β =
2πr2

hR2
∏

i

√

r2
h + qi

2r6
h + r4

h

∑

i qi −
∏

i qi
. (5.4)

The density of physical charge and chemical potentials are given by

ρi =

√
2qiN

2

8π2R6rh

∏

i

√

r2
h + qi , (5.5)

φi =

√
2qi

∏

j

√

r2
h + qj

rhR2(r2
h + qi)

, (5.6)

respectively. We should express qi in terms of β and ρi for the canonical ensemble and in

terms of β and φi for the grand canonical ensemble.

For the string embedding given by (3.5) with the boundary conditions (3.6),

L =

∣

∣

∣

∣

2R2αγ

r0

∫ z7

zt

dz
√

(z4H− 1)[H−1/3(γ2 − z4H) − γ2α2]

∣

∣

∣

∣

, (5.7)

where z = r/r0.

The regulated action can be written as

Sr =
T
√

λr0

γπR2

[∣

∣

∣

∣

∣

∫ z7

zt

dz H−1/3 γ2 − z4H
√

(z4H− 1)[H−1/3(γ2 − z4H) − γ2α2]

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∫ z7

zt

dz H−1/6

√

γ2 − z4H
(z4H− 1)

∣

∣

∣

∣

∣

]

. (5.8)
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Long string. The action for the long string in this background has already been exten-

sively studied in [25 – 27, 23]. As an example of some of the expressions that have been

obtained, we consider the case of a single charge q1 6= 0, q2 = q3 = 0 in the limit q1 ≪ r2
0.

For the canonical ensemble, the regularized action for the long string can be expressed as

βSr

T
√

λ
≈ 0.941

(

1 + 2.04ξ2 − 11.35ξ4 + 96.46ξ6 + · · ·
)L2

β2
+ O(L4) , (5.9)

where ρ1 ≡ ρ, ρ2 = ρ3 = 0 and ξ ≡ ρβ3/N2 ≪ 1. For the grand canonical ensemble,

βSr

T
√

λ
≈ 0.941

(

1 + 0.03ζ2 + 0.0005ζ4 + 0.000008ζ6 + · · ·
)L2

β2
+ O(L4) , (5.10)

where φ1 ≡ φ, φ2 = φ3 = 0 and ζ ≡ µβ ≪ 1. Similar expressions have obtained for other

cases, such as two equal charges q1 = q2, q3 = 0.

Short string. For large z, we can approximate

H−1/3(γ2 − z4H) − γ2α2 ≈ γ2(1 − α2) − z4 . (5.11)

Thus, there is a turning point at large distance given by z4
t = γ2(1−α2). L remains finite

if one takes ǫ → 0 in such a way that δ2 ≡ ǫ2/(1 − α2) remains fixed. In the (b) limit, we

can express L as

L =
2αγR2

r0

∫ zt

1/ǫ

dz

z2
√

z4
t − z4

+ · · · → 2R2

r0
δ . (5.12)

Likewise, the regulated action is

Sr =
T
√

λr0

γπR2

[
∫ zt

1/ǫ
dz

γ2 − z4

z2
√

z4
t − z4

+ · · · −
∫ 1/ǫ

zh

dz H−1/6

√

γ2 − z4H
z4H− 1

]

, (5.13)

Taking the (b) limit, we find

πR2

T
√

λr0

Sr = c +
r0

2R2
L , (5.14)

where

c = −
∫ ∞

zh

dz
H−1/6

√
z4H− 1

. (5.15)

We solved for the constant c numerically as a function of qi. The results for a single

chemical potential (q1 = q, q2 = q3 = 0), two equal chemical potentials (q1 = q2 = q, q3 = 0)

and three equal chemical potentials (q1 = q2 = q3 = q) are shown in figure 1. The domain

of the plot is determined by the region of thermodynamic stability:

2r6
h − r4

h

∑

i

qi −
∏

qi > 0 , (5.16)

which means that q < 2√
3
r2
0 for a single chemical potential, q < 1

2r2
0 for two equal chemical

potentials and q < .296r2
0 for three equal chemical potentials.
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Figure 6: c as a function of qi. For the solid red line, q1 = q, q2 = q3 = 0. For the dashed green

line, q1 = q2 = q, q3 = 0. For the dotted blue line, q1 = q2 = q3 = q.

Trading r0 for β, one can write

βSr

T
√

λ
=

√
Kc +

π

2
K

L

β
, (5.17)

where K is a factor due to the presence of chemical potentials. We will now consider some

simple cases. For a single chemical potential (q1 ≡ q, q2 = q3 = 0),

K =
1

2

√

(

1 +

√

1 +
2qβ2

π2R4

)2

− q2β4

π4R8
. (5.18)

For two non-vanishing and equal chemical potentials (q1 = q2 ≡ q, q3 = 0),

K = 1 +
qβ2

π2R4
. (5.19)

In the limit qi ≪ r2
0, we have

K = 1 +
β2

∑

i qi

2π2R4
+ · · · . (5.20)

Writing qi in terms of β and φi or ρi generally gives rather complicated expressions. How-

ever, this can be done rather simply for qi ≪ r2
0. In the grand canonical ensemble, this

limit corresponds to φiβ ≪ 1, for which we can write

K = 1 +
β2

∑

i φ
2
i

4π2
+ · · · . (5.21)

In the canonical ensemble, this limit corresponds to ρiβ
3/N2 ≪ 1 and

K = 1 +
16β6

∑

i ρ
2
i

π2N4
+ · · · . (5.22)
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6. A note on the speed limit for quarks

Thus far, we have considered spacelike strings. We will now comment on a feature of

timelike strings which comes about from the fact that the proper velocity V of the endpoints

differs from the worldsheet velocity parameter v [7, 8]. For strings moving in a background

described by a metric of the form (3.1), we have

V =
cX

cT
v . (6.1)

Thus, in order for a moving quark to be described by the endpoint of a timelike string, we

must have V < 1, which implies that

v < vmax =
cT

cX

∣

∣

∣

∣

z=z7

, (6.2)

where z = r/r0 and the radius of the endpoint is z7.

For the AdS black hole with the metric components given by (4.1),

vmax =

√

1 − z−4
7 . (6.3)

Recall that the probe brane radius z7 is related to the bare mass of the quarks. This has

recently been discussed extensively for the case of mesons in [28]. Since this speed limit

arises as a general feature of the background geometry, it should presumably also apply to

single quarks and possibly even gluons.

Including the leading corrections due to finite ’t Hooft coupling λ, the metric compo-

nents are now given by (4.6) and (4.7). Then we have

vmax =

√

1 − z−4
7

(

1 − 5.63λ−3/2 z−4
7

(

1 + z−4
7 − 3

5
z−8
7

))

. (6.4)

Note that this correction renders vmax smaller.

Due to the leading R2 type corrections, the metric components are given by (4.20)

and (4.21). Then

vmax =

√

1 − z−4
7

(

1 +
b1 + b2z

−4
7

2(z4
7 − 1)

)

, (6.5)

where b1 and b2 are given by (4.22). These corrections render vmax larger.

In order to include the effect of chemical potentials in the theory, we use the metric

components for an AdS black hole with three U(1) R-charges, which are given by (5.1)

and (5.2). This results in

vmax =

√

1 − z2
7

∏

i

(z2
7 + qi/r2

0)
−1 . (6.6)

Note that vmax increases due to the charge parameters qi. In the grand canonical ensemble

and for φiβ ≪ 1, this can be written as

vmax =

√

√

√

√1 − z2
7

∏

i

(

z2
7 +

φ2
i β

2

2π2

)−1

, (6.7)
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while in the canonical ensemble and for ρiβ
3/N2 ≪ 1, this can be expressed as

vmax =

√

√

√

√1 − z2
7

∏

i

(

z2
7 +

32

π2

(

ρiβ3

N2

)2)−1

. (6.8)
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